Design Features

* Noble Metal Thermocouple Elements ANSI Type R and S are provided in accordance with ITS90, and ANSI Type B is provided in accordance with IPTS-68.
* Alumina insulators are recommended with noble metal thermocouples. All noble metal elements have a butt-welded junction \& are available in 20 ga. (.032"), $24 \mathrm{ga} .\left(.020^{\prime \prime}\right)$ and 30 ga . (.010").

Style NB - Noble Bare Thermocouple Wire ..
"L" $\left.\quad \begin{array}{l}\text { Noble Metal Thermocouple Element Style NB is offered with } \\ \text { the options listed below. Create an ordering code by filling in } \\ \text { the boxes with the appropriate number and/or letter designation } \\ \text { for your requirements, and a part number will be assigned. }\end{array}\right]$

Style NZ — Noble Thermocouple Wire with 2-Hole Round Alumina Insulator•••••.

- 30 ga. Insulator P/N COR-124-105 and P/N CER-103-101 Ceramic Beads
- 24 ga. Insulator P/N COR-124-104 and P/N CER-103-101 Ceramic Beads
- 20 ga. Insulator P/N COR-124-106 and P/N CER-103-101 Ceramic Beads
* See Page 14-96 for Insulator Dimensions *

For Metal and Ceramic Protection Tubes
see pages 14-85 and 14-86.

Ceramic Protection Tubes

Ceramic Protection Tubes Application Data

Ceramic Protection Tubes are used in applications where contamination from hostile environments or the cutting action of concentrated and direct flame impingement are factors. Such conditions usually require a noble metal thermocouple such as platinum and platinum alloys.

When selecting assemblies using ceramic components, the expected maximum temperatures must be considered. At elevated temperatures, some ceramic materials go through a glass phase. As silica is a prime contaminant of platinum, alumina protecting tubes and insulators are recommended for temperatures exceeding $2000^{\circ} \mathrm{F}\left(1093^{\circ} \mathrm{C}\right)$.

Material	Maximum Operating Temperature	Thermal Shock Characteristics	Maximum Available Length (in)	Typical Applications	
Alumina (99.7%)	$3100^{\circ} \mathrm{F}$ $\left(1700^{\circ} \mathrm{C}\right)$	Fair (preheating to $900^{\circ} \mathrm{F}\left[482^{\circ} \mathrm{C}\right]$ recommended)	84	Iron, Barium, crown glass; non-ferrous metals; gas-tight protection for noble metal thermocouples in excess of $2400^{\circ} \mathrm{F}\left(1316^{\circ} \mathrm{C}\right)$	Sags at $2900^{\circ} \mathrm{F}\left(1593^{\circ} \mathrm{C}\right)$ Prevents dry hydrogen penetration
Porcelain (Mullite)	$2550^{\circ} \mathrm{F}$ $\left(1400^{\circ} \mathrm{C}\right)$	Poor (preheating to $900^{\circ} \mathrm{F}\left[482^{\circ} \mathrm{C}\right]$ recommended)	84	Non-ferrous metals; gas-tight protection for noble metal thermocouples to	Sags at $2550^{\circ} \mathrm{F}\left(1400^{\circ} \mathrm{C}\right)$ Prone to attack by halogen gases; some penetration of dry hydrogen. Contains silica.

Ordering Information

Complete the Part Number with 3 digits indicating length in whole inches.

Example: = APT-105-012 is $12^{\prime \prime}$ long and PPT-107-048 is $48^{\prime \prime}$ long.

Part Number	I.D. x O.D. ${ }^{+}$	Construction	Length
PPT-101-	$1 / 4 \times 3 / 8{ }^{1 / 2}$	Plain End	
PPT-102-	7/16" $\times 11 / 16^{\prime \prime}$	Plain End	
PPT-103-	$3 / 4 \times 1 "$	Plain End	
PPT-104-	$1^{\prime \prime} \times 1 \frac{1 / 4}{}$	Plain End	
PPT-105-	$1 / 4 \times 3 / 8{ }^{1 / 2}$	w/ Collar Approx. $5 / 16^{1 "} \times \frac{3}{1 / 4}$	12 "
PPT-106-	$7 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$	w/ Collar Approx. $5 / 16^{1 "} \times 11 / 16^{10}$	through $84^{\prime \prime}$
PPT-107-	$3 / 4 \times 1 "$	w/ Collar Approx. $5 / 16^{1 "} \times 1^{1 / 1 / 4}$	inch 6 " increments
PPT-108-	$1^{\prime \prime} \times 1 \frac{1 / 4}{}$	w/ Collar Approx. $5 / 16^{1 "} \times 1 \frac{17}{1 / 4}$	
PPT-109- \square	$1 / 41 \times 3 / 81$	w/Hex	
PPT-110-	$7 / 16^{\prime \prime} \times 11 / 16^{\prime \prime}$	Fitting w/Hex	
		Fitting	

${ }^{\top}$ Dimensional tolerance:
Up to 1" Dia. $\pm 5 \%$ or $.025^{\prime \prime}$, whichever is greater Over 1" Dia. $\pm 4 \%$ or .050 ", whichever is greater

Temperature Sensing

Metal Protection Tubes

Made in USA

Metal Protection Tubes

For longer life and continued accuracy, most thermocouples in industrial applications should be protected from physical damage, corrosion, and contamination by some type of
protecting tube or well. Metal tubes selected to suit the temperature, pressure and atmosphere are generally used with base metal thermocouples.

Typical Cast Iron Protection Tube

Material	Maximum Operating Temperature	Typical Applications	Remarks
304 Stainless	$1800^{\circ} \mathrm{F}\left(982^{\circ} \mathrm{C}\right)$	Food and Dairy Products, Petroleum Products, Mild Acids, Alkalies	Embrittles in $800^{\circ} \mathrm{F}\left(427^{\circ} \mathrm{C}\right)$ to $1400^{\circ} \mathrm{F}\left(760^{\circ} \mathrm{C}\right)$ range.
Cast Iron	$1300^{\circ} \mathrm{F}\left(704^{\circ} \mathrm{C}\right)$	Molten Aluminum, Gas Ducts	Withstands sulphur and caustic solutions.
316 Stainless	$1800^{\circ} \mathrm{F}\left(982^{\circ} \mathrm{C}\right)$	Food and Dairy Products, Petroleum Products, Mild Acids, Alkalies	Greater corrosion resistance than 304 Stainless.
446 Stainless	$2000^{\circ} \mathrm{F}\left(1093^{\circ} \mathrm{C}\right)$	Sulphurous Atmospheres such as Hydrogen Sulphide, Neutral Salt Baths	Excellent resistance to corrosion and oxidation at high temperatures. Do not use in carburizing atmospheres.
Inconel 601^{\circledR}	$2200^{\circ} \mathrm{F}\left(1204^{\circ} \mathrm{C}\right)$	Neutral Salt Baths, Carburizing and Nitriding Atmospheres	Good resistance to corrosion at high temperatures; excellent resistance to oxidation at high temperatures. Do not use in carburizing atmospheres above $1000^{\circ} \mathrm{F}\left(538^{\circ} \mathrm{C}\right)$.
Black Steel Pipe per ASTM A120	$1200^{\circ} \mathrm{F}\left(649^{\circ} \mathrm{C}\right)$	Molten Babbitt, Tin, Lead, and Magnesium	Low Cost

304 Stainless Steel (8\% Nickel-18\% Chrome)

Part Number	I.D. \times O.D.	NPT Thread	Const.	Length
*MPT-101--_	$.622^{\prime \prime} \times .840^{\prime \prime}$	$1 / 2 / 1$	Welded	$12^{\prime \prime}$ and
*MPT-102-_	$.824^{\prime \prime} \times 1.050^{\prime \prime}$	$3 / 4 / 1$	Welded	over in 6"
*MPT-103-__	$1.0499^{\prime \prime} \times 1.315^{\prime \prime}$	$1 "$	Welded	increments

446 Stainless Steel (28\% Chrome Iron)

Part Number	I.D. \times O.D.	NPT Thread	Const.	Length
MPT-109--_	$.622^{\prime \prime} \times .840^{\prime \prime}$	$1 /{ }^{\prime \prime}$	Seamless	$12^{\prime \prime}$ and
MPT-110-_	$.824^{\prime \prime} \times 1.050^{\prime \prime}$	$3_{/ 4 \prime \prime}^{\prime \prime}$	Seamless	over in 6"
MPT-111-__	$1.049^{\prime \prime} \times 1.315^{\prime \prime}$	$1^{\prime \prime}$	Seamless	increments

*If extra heavy wall is desired, specify.

Cast Iron

Inconel Alloy 601® (60\% Nickel-23\% Chrome-14\% Iron)

Part Number	I.D. \times O.D.	NPT Thread	Const.	Length
MPT-112--_	$.622^{\prime \prime} \times .840^{\prime \prime}$	$1 /{ }^{\prime \prime}$	Seamless	$12^{\prime \prime}$ and
MPT-113-_-	$.824^{\prime \prime} \times 1.050^{\prime \prime}$	$3_{/ 4 \prime \prime}^{\prime \prime \prime}$	Seamless	over in $6^{\prime \prime}$
MPT-114-_-	$1.049^{\prime \prime} \times 1.315^{\prime \prime}$	$1^{\prime \prime}$	Seamless	increments

*1" NPT external thread available on special request.

316 Stainless Steel

Black Steel Pipe (Per ASTM A120)

Part Number	I.D. x O.D.	NPT Thread	Const.	Length
MPT-115--_	$.364^{\prime \prime} \times .540^{\prime \prime}$	$1 / 4^{\prime \prime}$	Welded	$12^{\prime \prime}$ and
MPT-116--_	$.302^{\prime \prime} \times .540^{\prime \prime}$	$1 / 4 "$	Welded	over
MPT-117--_	$.546^{\prime \prime} \times .840^{\prime \prime}$	$1 / 2 \prime \prime$	Welded	in 6"
MPT-118--_	$.742^{\prime \prime} \times 1.050^{\prime \prime}$	$3_{4}^{\prime \prime \prime}$	Welded	increments
MPT-119-_-957" $\times 1.315^{\prime \prime}$	$1^{\prime \prime}$	Welded		

Ordering Information

Complete the Part Number with 3 digits indicating length in whole inches.
Example: $=$ MPT-105-012 is $12^{\prime \prime}$ long and
MPT-107-048 is $48^{\prime \prime}$ long.

Thermocouple Insulators

Oval-Double Hole Cordierite
Maximum Temperature: $2282^{\circ} \mathrm{F}\left(1250^{\circ} \mathrm{C}\right)$

Part Number	Width (in)	Thickness (in)	Bore (in)	Max. B \& S Gauge Size	Length (in)
COR-120-105	.437	.250	.156	7	1
COR-120-104	.375	.217	.110	10	1
COR-120-106	.172	.118	.042	19	1

Round-Single Hole Mullite
Maximum Temperature: $2900^{\circ} \mathrm{F}\left(1593^{\circ} \mathrm{C}\right)$

Round-Double Hole Mullite
Maximum Temperature: $2400^{\circ} \mathrm{F}\left(1315^{\circ} \mathrm{C}\right)$

Part Number	Diameter (in)	Bore (in)	Max. B \& S Gauge Size	Length (in)
COR-125-101	.156	.046	18	1
COR-125-102	.156	.046	18	3
COR-126-101	.250	.085	13	1
COR-126-102	.250	.85	13	3
*COR-127-101	.437	.156	7	1
*COR-127-102	.437	.156	7	3

*Material is Cordierite

Round-Four Hole Alumina
Maximum Temperature: $3300^{\circ} \mathrm{F}\left(1815^{\circ} \mathrm{C}\right)$

Fish Spine-Ball and Socket Insulators-Steatite
Maximum Temperature: $2400^{\circ} \mathrm{F}\left(1315^{\circ} \mathrm{C}\right)$

Part Number	Diameter (in)	Bore (in)	Max. B \& S Gauge Size	Length (in)	Number of Pcs. per Sleeve
CER-103-101	.110	.056	16	.110	$67 \mathrm{pcs} / 6^{\prime \prime}$
CER-103-102	.170	.068	14	.170	86 pcs/12"
CER-103-104	.200	.092	12	.200	Bulk Loose
CER-103-105	.330	.124	9	.330	Bulk Loose
CER-103-106	.400	.156	7	.400	Bulk Loose
CER-103-109	.260	.156	7	.260	Bulk Loose

